Autophagy- An emerging target for melanoma therapy
نویسندگان
چکیده
Melanoma accounts for only 5% of all cancers but is the leading cause of skin cancer death due to its high metastatic potential. Patients with metastatic melanoma have a 10-year survival rate of less than 10%. While the clinical landscape for melanoma is evolving rapidly, lack of response to therapies, as well as resistance to therapy remain critical obstacles for treatment of this disease. In recent years, a myriad of therapy resistance mechanisms have been unravelled, one of which is autophagy, the focus of this review. In advanced stages of malignancy, melanoma cells hijack the autophagy machinery in order to alleviate drug-induced and metabolic stress in the tumor microenvironment, thereby promoting resistance to multiple therapies, tumor cell survival, and progression. Autophagy is an essential cellular process that maintains cellular homeostasis through the recycling of intracellular constituents. Early studies on the role of autophagy in cancer generated controversy as to whether autophagy was pro- or anti-tumorigenic. Currently, there is a consensus that autophagy is tumor-suppressive in the early stages of cancer and tumor-promoting in established tumors. This review aims to highlight current understandings on the role of autophagy in melanoma malignancy, and specifically therapy resistance; as well as to evaluate recent strategies for therapeutic autophagy modulation.
منابع مشابه
Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo.
Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich condi...
متن کاملEssential role for acid sphingomyelinase-inhibited autophagy in melanoma response to cisplatin
The sphingolipid metabolising enzyme Acid Sphingomyelinase (A-SMase) has been recently shown to inhibit melanoma progression and correlate inversely to tumour grade. In this study we have investigated the role of A-SMase in the chemo-resistance to anticancer treatmentusing mice with melanoma allografts and melanoma cells differing in terms of expression/activity of A-SMase. Since autophagy is e...
متن کاملMeasurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma.
PURPOSE Autophagy consists of lysosome-dependent degradation of cytoplasmic contents sequestered by autophagic vesicles (AV). The role of autophagy in determining tumor aggressiveness and response to therapy in melanoma was investigated in this study. EXPERIMENTAL DESIGN Autophagy was measured in tumor biopsies obtained from metastatic melanoma patients enrolled on a phase II trial of temozol...
متن کاملPredictive Biomarkers and Personalized Medicine Measurements of Tumor Cell Autophagy Predict Invasiveness, Resistance to Chemotherapy, and Survival in Melanoma
Purpose: Autophagy consists of lysosome-dependent degradation of cytoplasmic contents sequestered by autophagic vesicles (AV). The role of autophagy in determining tumor aggressiveness and response to therapy in melanoma was investigated in this study. Experimental Design: Autophagy was measured in tumor biopsies obtained from metastatic melanoma patients enrolled on a phase II trial of temozol...
متن کاملTargeting autophagy as a potential therapeutic approach for melanoma therapy.
Melanoma, occurring as a rapidly progressive skin cancer, is resistant to current chemo- and radiotherapy, especially after metastases to distant organs has taken place. Most chemotherapeutic drugs exert their cytotoxic effect by inducing apoptosis, which, however, is often deficient in cancer cells. Thus, it is appropriate to attempt the targeting of alternative pathways, which regulate cellul...
متن کامل